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Abstract: Over the past half century, countries of Mainland Southeast Asia (MSEA) – 

Cambodia, Laos, Myanmar, Thailand, and Vietnam – have witnessed increases in 

commercialized agriculture with rapid expansions of boom-crop plantations. We used 

MODIS EVI and SWIR time-series from 2001-2014 to classify tree-cover changes across 

MSEA and performed a supervised change detection using an upscaling approach by 

deriving samples from existing Landsat classifications. We used the random forest 

classifier and distinguished 24 classes (16 representing boom-crops) with an accuracy of 

82.2%. Boom-crops occupy about 18% of the landscape (8% of which is rubber). Since 

2003 74,960 km2 of rubber have been planted; 70% of rubber is planted on former forest 

land, and 30% on low vegetation area (mainly former croplands). Timing, patterns of 

change, and deforestation rates, however, differ among the MSEA countries and the high 

spatial and temporal detail of our classification allowed us to quantify dynamics and 

discuss political and socio-economic drivers of change. 

Keywords: MODIS, random forest classifier, Mainland Southeast Asia, land-cover 

change, boom-crops, remote sensing 
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1. Introduction 

Since the early 1980s the five countries of Mainland Southeast Asia (MSEA), Cambodia, Laos, 

Myanmar, Thailand, and Vietnam, have experienced dramatic changes in rural land-use and 

social relations (Baird, 2011; Hall, Hirsch, & Li, 2011; Lestrelin, Castella, & Fox, 2013). Some 

of the main processes behind these changes (economic growth, industrialization, and 

urbanization) have driven the conversion of a great deal of agricultural land to commercial, 

industrial, residential, tourist and infrastructural uses. Processes working against agriculture, 

however, coexist with forces that speak to the continuing importance of farming. National 

policies have led to agricultural intensification and the linking of smallholder production systems 

to land, labor and commodities markets. In a recent survey of agrarian change in Southeast Asia, 

Hall et al. (2011) identified major land-cover transitions associated with ongoing socio-economic 

and political changes. These included loss and gain of forests, agricultural intensification and 

extensification including boom crops, and urbanization. 

Between 1990 and 2010 forest cover in MSEA fell from 50.7 to 45.7%, particularly as a result of 

losses in Cambodia, Laos and Myanmar, although certain tree crop types (e.g. rubber, coconut, 

oil-palms) may be included in the forest definition (FAO, 2011). In Thailand, some forests are 

beginning to regrow on former cropland (Leblond, 2008). In Vietnam, large government-

supported afforestation and reforestation programs are resulting in forest expansion, although, as 

in almost all countries in the region, primary forests are still being lost at high rates (Meyfroidt & 

Lambin, 2009). Boom crops are crops that witness rapid and extensive expansion usually 

triggered by increased market incentives and favorable policies, e.g., promoting agricultural 

transformation in the form of smallholder market integration and large scale plantations (Hall et 

al., 2011). Among the many types of commercial boom crops promoted in MSEA are numerous 
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tree-based products such as rubber, coffee, tree species for pulp and paper (particularly 

eucalyptus and acacia), cashews, and fruits (e.g. oranges, lychees, and longans), but also non-

tree-based boom crops, such as sugarcane.  

The investment of political and financial capital these developments represent, and the 

concomitant shifts in livelihood strategies and land-use patterns that accompany them have 

important social and ecological implications. Boom crops are marked by both agricultural 

intensification (i.e. subsistence agriculture or agro-forests are converted to new boom crops 

(rubber, cashews, coffee)) as well as agricultural expansion (i.e. forested lands are converted to 

new tree crops). We began this study with the hypothesis that most (but not all) tree-based boom 

crops in MSEA were marked by intensification of previously used agricultural land that was not 

necessarily accompanied by deforestation, but the intensification may push subsistence land-uses 

elsewhere. 

Monitoring change in tree-dominated landscapes in MSEA is challenging because the processes 

of change affect the diversity of replacement crops. For example, the secondary forests 

associated with shifting cultivation can either be deforested or afforested depending on whether 

they are replaced by a variety of tree crops (rubber, oil palm, coffee) or the expansions of 

permanent agriculture (sugar cane, cassava) (Suepa, Qi, Lawawirojwong, & Messina, 2016; 

Tottrup, Rasmussen, Eklundh, & Jönsson, 2007). This study sought to document changes in tree 

cover at the regional scale and we used time-series of MODIS 16-day image composites to map 

changes in forests and tree-boom crops from 2001-2014 in parts of four MSEA countries: 

Thailand, Laos, Cambodia, and Vietnam, as well as in Shan State Myanmar, and Xishuangbanna 

Prefecture in southern Yunnan, China (Z. Li & Fox, 2011). The MODIS classification builds  on 

our previous work at the local scale using Landsat imagery to map land-cover dynamics from 
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2000-2014 for selected Landsat footprints in Laos, Cambodia, Thailand, and Myanmar (cf Hurni, 

Schneider, Heinimann, Nong, & Fox, 2017). 

This paper seeks to report the extent of tree-based boom crops in the study region in 2014; and 

the expansion of rubber between 2003 and 2014. We produced an up-to-date map that depicts the 

precise from-to (i.e., from evergreen forests, deciduous forests, or permanent agriculture to tree 

crop) trajectory, location, extent (useful for separating smallholders from large-scale 

concessions), and timing of recent changes. The paper does not present an extensive discussion 

of the political and economic conditions under which crop booms occur (see for instance De 

Koninck, 2006; De Koninck, Bernard, & Bissonnette, 2011; Gérard & Ruf, 2001; Hall, 2003; 

Hall et al., 2011; Ziegler, Fox, & Xu, 2009). This paper builds on previous work done by Hurni 

et al. (2017) on selected Landsat footprints and expands the classification to the MSEA region 

using MODIS time-series data to provide insights into the political and economic conditions 

under which these changes occurred. 

2. Background 

Hall et al. (2011) argue that the Southeast Asian literature permits a broad distinction between 

booms that have taken place under ‘secure’ conditions and those that have not. ‘Insecure’ booms 

take place in areas that are often conceptualized as ‘frontiers’, areas imagined by national leaders 

and others to be ‘resource frontiers’, with low population densities, available land, and 

underutilized resources (see Barney, 2008). In reality, these places are almost always occupied 

by small-scale farmers, especially upland minorities who have often lived there for generations 

(Baird, 2010, 2011), and practiced subsistence agriculture (Fox & Vogler, 2005; Schmidt-Vogt et 

al., 2009). In ‘secure’ booms, Hall et al. (2011: 839) write ‘the basic tenure relations that 
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existed before the boom survive it. In such cases, the most obvious power shaping land control 

during the boom is thus market power, as newly-valuable land changes hands through 

mutually-agreed sales and leases.’ 

Hall et al. (2011:841) differentiate four main actors that take part in crop booms. These include: 

1) state actors; 2) private companies; 3)  in situ smallholders; and 4) migrant would-be 

smallholders. While the various boom crops have been grown under many organizational 

frameworks, and while smallholders have successfully grown all of them, there is a fairly clear 

distinction between crops dominated by relatively independent smallholders (cocoa and coffee) 

and those where larger-scale production has been the rule (fast-growing trees and oil palm), 

with shrimp and rubber as intermediate cases (Hall et al. 2011). 

 

3. Materials and Methods 

We mapped land-cover dynamics in MSEA using the MODIS MOD13Q1 product. This product 

provides MODIS bands and vegetation indices (e.g. Enhanced Vegetation Index (EVI)) with 

circa 231m resolution as 16-day image composites by performing a pixel-based selection of the 

best observation acquired in the preceding 16 days of the sensors daily image acquisitions 

(USGS, 2017). This composition approach improves the data substantially by minimizing noise 

related to cloud cover, haze, etc. in the time-series. Previous studies focusing on land-cover 

dynamics in MSEA used EVI time-series to identify specific land-use processes or crops (e.g. 

shifting cultivation, rubber) and more recent studies, focusing on a broader range of dynamics 

and processes to determine vegetation and land-use phenology, have emphasized the importance 

of including band 7 (Shortwave Infrared (SWIR)) to improve the mapping accuracy of forest 
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dynamics (Grogan, Pflugmacher, Hostert, Verbesselt, & Fensholt, 2016; Hurni, Hett, Heinimann, 

Messerli, & Wiesmann, 2013; Z. Li & Fox, 2012; Suepa et al., 2016). In this study we 

consequently used the EVI and the SWIR band (band 7) of the MOD13Q1 product and included 

the full time-series of 16-day image composites from 2001 through 2014. Despite the image 

composition strategy our data still showed spikes, especially during the period May to September 

due to the persistent cloud cover that exists during the rainy season; even in a 16 day period it is 

not always possible to obtain a clear and noise-free observation. To improve the quality and 

consistency of the time-series, we thus processed the data with a smoothing algorithm using 

Timesat software (Eklundh & Jönsson, 2010; Jönsson & Eklundh, 2004). Timesat applies a 

smoothing function to the data and returns files that contain even renditions of the original data. 

We applied the double logistic function to smoothen the data as it showed the best performance 

and was recommended by other authors dealing with noisy data (Beck, Atzberger, Høgda, 

Johansen, & Skidmore, 2006; Eklundh & Jönsson, 2010; Hird & McDermid, 2009). We applied 

this fitting function to the EVI and SWIR bands covering the area of MSEA from 2001 through 

2014. Finally, we rescaled the SWIR and EVI time series to improve classification accuracies by 

cutting off the top and bottom one percentile, linearly redistributing the remaining values 

between zero and one, and assigning the bottom and top one percentile a value of zero and one, 

respectively (van der Linden et al., 2015). 

We performed the classification of the full MODIS EVI and SWIR time-series from 2001-2014 

using the random forest (RF) classifier implemented in EnMap-Box (Jakimow et al., 2015; van 

der Linden et al., 2015). Random forests are a machine learning algorithm, which provides 

substantially higher classification accuracies in contexts with complex ecological issues (Cutler 

et al., 2007; Schneider, 2012). In contrast to traditional classifiers, e.g. maximum likelihood, it 
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manages noise, handles non-linear relationships occurring in the remote sensing data, and makes 

no assumptions on data distribution (Clark, Aide, Grau, & Riner, 2010). Furthermore, it requires 

few user-defined parameters and its computational efficiency makes it suitable for a 

classification of large datasets (Jakimow et al., 2015; Pal, 2005). Random forests consist of an 

ensemble of decision-tree classifiers and each tree provides a vote on the most popular class 

assigned to the input vector (Breiman, 2001). The training dataset for each tree consist of a 

random subset of the overall data (sampled with replacement). The decision at each node of the 

tree uses a randomly selected subset of candidate classification features (i.e. the MODIS bands), 

whereby the number of features is constant and user defined. We set it to the square root of all 

features, which has been shown to provide a good compromise between predictive accuracy and 

overfitting (Breiman, 2001). At each node, an optimization is carried out that results in the most 

homogeneous split of the data (Rodriguez-Galiano & Chica-Rivas, 2014). To assess the impurity 

of a split we used the Gini index, and each tree is fully grown until a further subdivision does not 

reduce the Gini index (Cutler et al., 2007; Jakimow et al., 2015). The out-of-bag observations 

(i.e. the samples not included in the bootstrap sample) are then used to vote for the most frequent 

class within each tree and a simple majority vote over all trees provides the final classification 

(Breiman, 2001; Cutler et al., 2007). We used a maximum of 100 ensemble decision trees to 

classify the data after testing the influence of the number of decision trees on the overall 

accuracy by using 90% of the points for training and 10% of the points for testing. The inclusion 

of a larger number of trees (we used 100, 500, 1,000, and 10,000 decision trees) did not improve 

classification accuracies (we obtained overall accuracies of 83.33%, 82.46%, 82.16%, and 82.6% 

respectively) (Jakimow et al., 2015; Pal, 2005). 

We classified the MODIS time-series following an ‘upscaling’ approach and extracted training 
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and verification points from seven Landsat-based land-cover change classifications in the region 

(Hurni et al. 2017). Due to the differences in pixel sizes, this operation is usually performed by 

defining a threshold of a majority cover of the 30m resolution land-cover classes within a 

MODIS pixel (circa 231m resolution), extracting the MODIS pixels that meet the threshold 

criteria, and classifying the MODIS data with these samples (Clark et al., 2010; DeFries, 

Townshend, & Hansen, 1999; Hurni et al., 2013). We adapted this approach and determined the 

classification scheme and the number of classification samples for an accurate classification of 

land-cover dynamics in iterations. As shown in Figure 1 (A), we started this process with the 

extraction of classification samples from the Landsat classifications of land-cover change for 

seven selected footprints in MSEA. 

 

Figure 1: Overview of the classification samples collection approach. Rounded boxes represent 

classification iterations where we increased accuracies by adjusting sample amounts and merging classes 
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Working within these 7 scenes we selected only ‘pure’ pixels (i.e. the MODIS pixel is fully 

covered by one Landsat-based land-cover change class) because initial tests that included mixed 

samples resulted in lower accuracies. This provided samples on three types of land-cover and 

land-cover change classes: group 1) no-change classes (i.e. evergreen and deciduous forests, low 

vegetation areas (LVA), water, and tree plantations established before 2003); group 2) boom 

crop change classes (i.e. rubber, cashews, eucalyptus, coffee, sugarcane) that are subdivided into 

from-to change (i.e. from evergreen forests, deciduous forests, or LVA to the boom crop) and the 

period the change occurred (2003-2005, 2006-2008, 2009-2011, 2012-2014); and group 3) land-

cover change classes without a focus on the date of the change due to the heterogeneity of the 

timing of change (i.e. rotational agriculture, expansion of LVA, and new water bodies). Next, we 

validated these samples using Google Earth high-resolution data to avoid the inclusion of 

classification errors of the Landsat data in the MODIS classification. We obtained 27,695 

samples for a total of 33 classes, but their distribution among the classes varied significantly. 

Due to the difference between the MODIS and Landsat pixel size, we extracted relatively fewer 

sample points for the more fragmented classes in relation to their area. We obtained an 

abundance of sample points for the no-change classes (group 1 above); while few samples were 

obtained for groups 2 and 3. We needed to adjust for this imbalance of sample points across the 

classes. Various scholars have shown that the appropriate amount of sample points for an 

accurate supervised classification of land-cover change does not only depend on the class area 

(spatial heterogeneity), but also on the temporal heterogeneity and the classification scheme 

(spectral-temporal similarity of classes) (Foody & Arora, 1997; Heydari & Mountrakis, 2018; 

Hurni et al., 2017). To represent temporal heterogeneity, change classes consequently need 

relatively more sample points despite the small areas they cover. We performed these 
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adjustments to the sample points in iterations and started with an adjusted random selection of 

points based on class area shares (Figure 1 (B)). Due to the large amounts of samples and the 

imbalanced distribution across classes, we limited the maximum number of points for the largest 

class to 1,000 points and the minimum number of points to 100 and randomly selected samples 

for each class within this range based on the class area. In this way we obtained sufficient points 

for the small change classes to represent the temporal heterogeneity while the larger, usually 

spatially more heterogeneous classes, also obtained more points. Classes with fewer than 100 

samples in total were still included in the classification. In the following classification iterations 

we focused on class-wise accuracies by using 75% of the samples for classification and 25% for 

verification. We then adjusted sample amounts for the classes with low accuracies in three ways: 

1) by increasing the number of samples if more points were available; 2) by merging classes 

when we had already used all sample points and accuracies were still insufficient. This grouping 

only affected change classes and was done by crop type, e.g. conversions to cashews in different 

periods needed to be merged into one cashew class to obtain acceptable accuracies; and 3) by 

reducing the number of points for classes with large sample sizes (usually the no-change 

classes); most of the confusions occurred within the classes with few samples (usually the 

change classes). We selected samples randomly from our pool of all samples for each 

classification and we continued reiterations until further adjustments to the number of sample 

points and the classification scheme did not result in higher accuracies in terms of trade-offs 

among classes and the overall accuracy (Figure 1 (C)). Next, we focused on the upscaling, i.e. 

the performance of the classification outside the seven Landsat footprints. We used multi-

temporal Google Earth high resolution images to identify locations and classes with upscaling 

difficulties and added sample points for those locations (Figure 1 (D)). This was also guided by 
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the authors’ knowlege of the study area. We focused on locations where the land-cover and land-

use as well as environmental conditions differed from the area covered by the Landsat 

classifications (e.g. Vietnam, southeastern Thailand and the Tonle Sap area in Combodia). The 

different boom crops can be distinguished in the high resolution images based on the crop 

spacing in the x and y direction, canopy size and structure, and to a certain degree based on the 

RGB color representation. Figure 2 shows examples of such transformations for the boom crops. 

In case there were not sufficient historic high resolution images available, we identified the crop 

type in the recent high resolution image and the timing of the change and the land-cover before 

the change using Landsat time-series. 

 

Figure 2: Examples of transformations to boom crops using Google Earth high resolution images. 

Different boom crop types can be distinguished based on crop spacing and canopy size and structure 

We limited the sample collection to areas where multi-temporal high resolution images were 

available and we identified pure pixels by overlaying those areas with polygons representing the 

MODIS pixel size. In this second round of iterations, we used all these samples (4,642 collected 

Google Earth samples) and the ones from the previous iteration (6,128 selected Landsat 

samples). Starting from the number of samples defined in the previous iterations we randomly 

selected the number of classification samples from our new pool of points. We then performed 
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the classification in iterations with adjustments to the sample size as described above until trade-

offs between class-wise and overall accuracies could not be increased. During this process we 

merged, for example, the eucalyptus classes into the class ‘pulp trees’, as the fast cycle of 

planting and harvesting related to pulp wood production did not allow us to distinguish tree types 

(e.g. eucalyptus from acacia). With this last step of optimizing the number of samples and their 

spatial distribution, we obtained a total number of 6,849 samples, ranging from 19-918 points per 

class; we collected 5,126 samples from our Landsat analyses and 1,723 samples from Google 

Earth (Figure 1 (E)). Table 1 shows the classification scheme with a total of 24 classes, six 

represent permanent land-cover types (group 1) and 18 land-cover change classes. Eleven of the 

change classes focus on rubber and sugarcane and specify from-to changes and the period of 

change (group 2), while the seven other change classes (group 3) do not provide information on 

the ‘from’ land-cover or the timing of change. This classification scheme does not include all the 

land-cover changes that occured in the study area. For example it is possible that during our 

study period forests were converted to one boom crop and then later replaced by another boom 

crop (multiple transformations). However, our work at the Landsat scale as well as the revision 

of the MODIS samples showed that such transformations represent  only a small share of the 

study area compared with single transformations, e.g. forests to boom crops (Hurni et al., 2017). 

As a result it was not possible to obtain sufficient sample points for areas with multiple 

transformations. The classification scheme we applied thus brings a certain generalization and 

only focuses on the prevailing land-cover transformations in the study area. 
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Table 1: The classification scheme applied to MODIS time-series for unchanged and changed land-cover 

types. We only included classes highlighted in the shaded cells due to absence of some classes during 

certain periods. 

 2003-2005 2006-2008 2009-2011 2012-2014 

Land-cover 

classes 

(group 1) 

Water 

Evergreen forests (F) 

Deciduous forests (DF) 

Low vegetation areas (LVA) 

Rubber 

Pineapple 

Detailed 

land-cover 

change 

(group 2) 

Rubber from F Rubber from F Rubber from F Rubber from F 

Rubber from DF Rubber from DF Rubber from DF Rubber from DF 

Rubber from LVA Rubber from LVA Rubber from LVA Rubber from LVA 

Sugarcane from F Sugarcane from F Sugarcane from F Sugarcane from F 

Sugarcane from DF Sugarcane from DF Sugarcane from DF Sugarcane from DF 

Land-cover 

change 

(group 3) 

Rotational agriculture 

Expansion of low vegetation areas / Intensification 

New hydropower dams 

Pulp trees 

Cashews 

Fruit trees 

Coffee 

F = evergreen forests; DF = deciduous forests, LVA = low vegetation area (annual crops, grass, shrubs),  

We performed a ten-fold cross-validation using the 6,849 sample points to validate the 

classification (Kohavi, 1995). This approach split the sample points into ten equally-sized parts 

and used nine parts to train the classifier and the remaining part to assess the accuracy of the 

classification. We repeated this ten times so that each part is used once for the evaluation of the 

classification accuracy and the final accuracy of the map is derived by calculating the arithmetic 

mean of all ten accuracy assessments. The ten-fold cross-validation is considered to be more 

reliable than traditional approaches that split the sample points into a single training and 

validation set, because both, the final accuracy assessment and classification, are based on all 

sample points, but are still independent. This approach improves classification accuracies as 

potential biases between the training and validation points are avoided. Furthermore we 

evaluated the accuracy of mixed pixels as at the MODIS scale, land-cover dynamics often occur 

at the sub-pixel level (Lunetta, Knight, Ediriwickrema, Lyon, & Worthy, 2006; Setiawan & 
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Yoshino, 2014). We selected mixed pixels from areas covered by the Landsat classifications (7 

footprints across MSEA) and extracted all pixels that showed a majority land-cover of 70-80% 

and of 50-60% within the MODIS pixels to evaluate how different shares of majority cover 

affected the classification accuracy. From these two sets of mixed pixels we then randomly 

selected the same number of samples as we used for the classification with the pure pixels so that 

we conducted three accuracy assessments (pure pixels, mixed pixels with 70-80% majority 

cover, and mixed pixels with 50-60% majority cover) based on the same number of validation 

points. For pulp trees, coffee, and sugarcane we were not able to extract the targeted amount of 

mixed pixels from the Landsat classifications. In the sugarcane classes the number of mixed 

validation pixels was very low so that accuracy estimates may have been affected. Given this 

limitation error adjusted area estimates were calculated according to the approach suggested by 

Olofsson et al. (2014) using the accuracy assessment of pure pixels only. For each class we then 

calculated the ratio between the area defined by the pixels and the error adjusted area estimate. 

These ratios for each class were then used to obtain error adjusted area estimates for each 

country / region. 

4. Results 

Figure 3 outlines the study area. It includes all of Laos and Cambodia, most of Vietnam (except 

north of Hanoi), northeastern Thailand and the rubber growing area southeast of Bangkok, Shan 

State in Myanmar, and Xishuangbanna Prefecture in southern Yunnan, China. The classification 

consists of 24 classes and 16 classes represent boom crops. Pulp trees, coffee, cashews, fruit 

trees, and pineapple  are each represented by one class; while for rubber we mapped ten classes 

and sugarcane two classes showing from-to changes and the period of change. For visualization 

purposes we combined the different rubber and sugarcane classes into one rubber and one 
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sugarcane class (Fig. 3); Figure 4 shows an extent of the map with the full classification scheme 

and Figure A (supplementary material) shows the expansion of rubber around Stung Treng, 

Cambodia. 

 

Figure 3: Land-cover change classification of Mainland Southeast Asia (MSEA). Change trajectories to 

rubber and sugarcane were grouped into one class. 
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Figure 4: A selected extent of the land-cover change classification showing southern Laos, northeastern 

Cambodia, and the Central Highlands of Vietnam. Cambodia and Laos show mainly new rubber while in 

Vietnam old and new rubber as well as cashew, coffee, and pulp tree plantations occur. 
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The ten-fold cross validation resulted in an overall accuracy of the classification of 82.2% and 

only four of the classes (highlighted in table 2) show either user’s or producer’s accuracies (UA 

and PA) below 70%. High accuracies were obtained across all three groups of classes; classes 

with lower UA and PA only occurred in the change classes (groups 2 and 3) and prevailed in 

group 3, where we did not consider the timing of the change. The no-change classes (group 1) 

performed well and confusion was limited to the rotational agriculture class, but also some of the 

boom crops (e.g. pulp and fruit trees). Classes of group 2, which specify from-to changes and the 

period of change, performed well with only a few misclassifications occurring within rotational 

agriculture (mainly classes ‘rubber from forests (F)’), low vegetation areas ‘rubber from LVA’), 

and deciduous forests ‘rubber from DF’). Only the class ‘rubber from LVA, 2006-2008’ showed 

a UA or PA <70% due to confusions with the class ‘LVA’ and to a certain degree with ‘rubber 

from F, 2006-2008’. The class ‘rubber from LVA, 2006-2008’ mainly occurred in Thailand 

where rubber was planted by smallholders. Due to the fragmentation of this class, we were able 

to obtain relatively few samples when compared to the size of the class area. Most likely, the 

temporal heterogeneity could not be represented sufficiently with these samples, which led to 

misclassifications either with ‘LVA’ (similar dynamics up to 2010 due to the weak signal of 

young rubber) or ‘rubber from F, 2006-2008’ (the same signal for rubber regrowth from 2006-

2014). Interestingly this did not occur for the class ‘rubber from LVA, 2003-2005’, which also 

occurs mainly in Thailand on fragmented plots. We used the same number of sample points for 

the corresponding class ‘rubber from F, 2003-2005’, which probably reduced misclassifications 

between the two classes. Similar effects have been observed by Hurni et al. (2017) where errors 

between classes that represented similar dynamics tended to increase when there was an 

imbalance among the number of sample points. Confusions with the class ‘LVA’ most likely 
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occurred because of the early conversion to rubber. With developed canopies, the signal was 

clear and no misclassifications with ‘LVA’ occurred. Most of the change classes in group 2 show 

high accuracies and usually the UA was bigger than the PA. Our area estimates on the expansion 

of boom crops can thus be considered as reliable, but we tend to slightly underestimate their 

expansion. 

Temporally heterogeneous classes of group 3 (e.g. rotational agriculture, expansion of LVA, fruit 

trees, cashews, pulp trees) performed well, but tended to show lower accuracies. 

Misclassifications mainly occurred within the classes of group 3 and with forests. The area of 

rotational agriculture is slightly overestimated and includes forested areas, ‘expansion of LVA’, 

and few pixels of boom crop classes. Conversions to low vegetation areas (‘expansion of LVA’) 

were underestimated due to confusions with rotational agriculture, LVA, and pulp trees. 

Similarly fruit trees were labelled as rotational agriculture, LVA, or forests, which led to an 

underestimation of the area of this class. Many of these changes occurred in forested areas; a 

forest clear-cut is a stronger signal compared to crop or fallow regrowth, which looks similar for 

most crops/fallow in the first couple of years due to small canopies, intercropping, and weeds 

(Chen et al., 2012; Z. Li & Fox, 2011, 2012). Confusions can thus easily occur because all of 

these classes show some form of forest clear-cutting followed by regrowth throughout the study 

period. We assume that accuracies could be improved by dividing these classes into multiple 

classes based on periods of change, but in the study at hand this was not possible. Change 

dynamics of certain classes are too heterogeneous for a subdivision, which concerns e.g. 

rotational agriculture with a myriad of crop-fallow rotation lengths across the region, or pulp 

trees where planting and harvesting occurs within a couple of years. On the other hand, some 

fragmented classes cover rather small areas and sufficient samples for a reliable classification 
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could only be obtained by grouping the periods of change, as was the case for e.g. cashews and 

coffee. For less fragmented classes like ‘sugarcane from DF, 2009-2011’, we achieved high 

accuracies with as few as 19 samples. However, sugarcane shows a cropping cycle of 12-18 

months, different from all the other crops. We assume that this clear signal, which differs from 

the signal of all the other classes, also allowed for a more accurate classification with only few 

points. 

The accuracy assessment using mixed pixels showed that misclassifications tend to increase for 

MODIS pixels that represent more than one land-cover or land-cover change class. For pure 

pixels we obtained an overall accuracy of 82.2%; for pixels with a majority cover of one land-

cover or land-cover change class of 70-80% we obtained an accuracy of 61.5%; and for pixels 

with a majority cover of 50-60% we obtain an accuracy of 43.4% (see Table A, supplementary 

material). In mixed pixels we also observe misclassification patterns, but which specific classes 

were confused was less clear than the evaluation using pure pixels. There are not only more 

misclassifications, but confusions also involve more classes. Nevertheless, certain characteristics 

can be observed as we move from the evaluation of pure pixels towards the evaluation of 

increasingly mixed pixels. In group 1, the classes ‘water’, ‘rubber (before 2003)’, and 

‘pineapple’ show a high accuracy for pure pixels and UA’s are higher than PA’s. For the mixed 

pixels UA’s remain high but PA’s decrease rapidly and the area of these classes is thus 

underestimated. Among mixed pixels water is often classified as LVA, probably due to the large 

amounts of paddy fields that are seasonally covered by water and are included in the class LVA. 

‘Rubber (before 2003)’ is confused with LVA, rotational agriculture, orchards, coffee, and 

earlier conversions to rubber while ‘pineapple’ is confused with LVA and fruit trees. These 

classes often occur next to each other, which resulted in a large number of misclassifications in 
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mixed pixels. Evergreen forests (mainly mixing with rotational agriculture), LVA (mainly 

mixing with deciduous forests), and deciduous forests (mainly mixing with LVA and rotational 

agriculture) show a decrease in both, UA and PA. In mixed pixels we underestimate the area of 

evergreen forests (UA > PA) while we overestimate the area of LVA and deciduous forests. 

Classes from group 2 (conversions to rubber and sugarcane) show similar patterns of 

misclassifications for mixed pixels as for the pure pixels. UA’s tend to be higher than PA’s, but 

with increasingly mixed pixels both are lower and the difference between UA and PA increases. 

Among both pure and mixed pixels we thus tend to underestimate the area of these classes. 

Confusions mainly occur in the class ‘rotational agriculture’ (conversions from forests to boom 

crops), the class LVA (conversions from LVA to boom crops), and to a certain degree among 

classes that show the same transformation type (e.g. forests to boom crops), but a different 

timing of change. For the sugarcane classes only a few mixed pixel were available for validation 

and a comparison with the evaluation using pure pixels was not possible. Classes in group 3 tend 

to show lower accuracies for the mixed pixels and only the class ‘new water’ retained a high UA 

for increasingly mixed pixels, but similar to the class ‘water’ the PA is substantially lower. For 

the other classes the relationship between UA and PA remains mostly the same, but accuracies 

decline with increasingly mixed pixels and misclassifications mainly occur with forests, 

rotational agriculture, and LVA. In mixed pixels e thus tend to underestimate the area covered by 

land-cover conversions (groups 2 and 3) while we overestimate the area covered by the classes 

deciduous forests, LVA, and rotational agriculture. 
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Table 2: Accuracy assessment based on a ten-fold cross-validation of the land-cover change classification 

(overall accuracy: 82.2%). Highlighted rows show a user or producer accuracy below 70%. Area 

estimates are error adjusted. 

Land-cover (change) class UA PA Area (km2) Area (%) Samples 

Water 96.0 95.0 18,627.6 1.62 300 

Evergreen forests (F) 83.0 89.4 289,189.9 25.08 918 

Deciduous forests (DF) 82.2 87.5 158,128.0 13.71 569 

Low vegetation areas (LVA) 77.9 90.2 281,789.8 24.44 735 

Rubber (before 2003) 86.9 83.5 19,321.6 1.68 256 

Pineapple 97.9 93.9 2,530.5 0.22 100 

Rubber, from F, 2003-2005 95.2 79.0 2,294.0 0.20 100 

Rubber, from LVA, 2003-2005 79.2 77.6 7,256.3 0.63 100 

Rubber, from F, 2006-2008 85.6 88.3 11,534.2 1.00 350 

Rubber, from DF, 2006-2008 92.2 71.0 2,687.4 0.23 100 

Rubber, from LVA, 2006-2008 85.1 65.5 15,313.3 1.33 150 

Rubber, from F, 2009-2011 87.1 79.1 14,099.3 1.22 360 

Rubber, from DF, 2009-2011 89.9 83.7 7,477.4 0.65 202 

Rubber, from F, 2012-2014 89.2 71.8 9,750.1 0.85 150 

Rubber, from DF, 2012-2014 81.8 81.0 4,550.9 0.39 100 

Sugarcane, from F, 2006-2008 100.0 97.9 527.0 0.05 100 

Sugarcane, from DF, 2009-2011 100.0 89.5 484.1 0.04 19 

Rotational Agriculture 62.5 70.4 155,287.2 13.47 706 

Expansion of LVA / intensification 80.7 67.2 42,306.8 3.67 356 

New Water 100.0 91.9 2,379.6 0.21 100 

Pulp trees 78.2 74.7 44,829.3 3.89 400 

Cashews 92.7 74.5 14,715.7 1.3 156 

Fruit trees 84.5 68.0 28,487.9 2.47 202 

Coffee 87.5 88.9 19,532.9 1.69 320 

As shown in table 3 we found that in 2014, 25% of the landscape was covered by evergreen 

forest, 14% by deciduous forest, 13% by rotational agriculture, and 24% by low vegetation areas 

(mainly cereal crops but also scrub and bushes). In terms of tree crops we found that 8% of the 

landscape had been converted to rubber; while cashews covered 1% of the landscape, coffee and 

fruit trees each covered about 2%, and pulp trees covered 4%. Considered as a single category, 

tree crops accounted for 18% of the landscape. Looking only at rubber, the largest boom crop in 

the region, approximately 74,960 km2 of land were converted to rubber between 2003 and 2014; 

50% of this was planted on former evergreen forest land and 20% on deciduous forest land 
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(Table 4). Hence 70% of the expansion of rubber plantations caused deforestation. Thirty percent 

of the rubber expansion occurred on areas previously covered by low vegetation (mainly annual 

crops). Our hypothesis that boom crops were marked by intensification of previously used 

agricultural land and was not necessarily accompanied by deforestation was wrong. The 

expansion of rubber between 2003 and 2014 caused deforestation primarily in Cambodia and 

Laos, but also in Vietnam, Xishaungbanna, and Shan State as well. 

Table 3: Land-cover in the selected regions of 6 countries in 2014.  

Land-cover in 2014 (area in km2, and % total by country) 

Land Cover Thailand Cambodia Vietnam 
Xishuang-

banna, China 
Laos 

Shan State, 

Myanmar 
Total 

Evergreen 

Forests 

37,967 35,437 59,649 7,443 108,790 39,837 289,124 

12 18 24 35 50 26 25 

Deciduous 

Forests 

39,786 39,522 9,645 1,578 15,459 52,087 158,077 

13 20 4 7 7 33 14 

Rotational 

Agriculture 

24,807 10,877 29,264 3,533 51,383 35,397 155,261 

8 6 12 17 24 23 13 

Low Veg 

Area 

146,627 49,691 47,888 855 17,050 19,602 281,712 

 46 26 19 4 8 13 24 

Rubber 

28,614 29,743 19,166 6,182 7,656 2,921 94,282 

9 15 8 29 4 2 8 

Cashews 
1,475 2,530 8,879 62 1,640 127 14,713 

0 1 4 0 1 0 1 

Coffee 
1,379 1,088 15,654 305 468 636 19,530 

0 1 6 1 0 0 2 

Pulp Trees 
4,387 3,059 31,589 83 5,483 227 44,828 

1 2 13 0 3 0 4 

Fruit Trees 
15,634 3,018 5,678 724 2,776 652 28,481 

5 2 2 3 1 0 2 

All Tree 

Crops 

51,489 39,439 80,966 7,355 18,022 4,562 201,834 

16 20 33 35 8 3 18 

Land-cover changes related to boom crops vary heavily between, but also within the countries of 

MSEA. This concerns the type of boom crops, the timing of the conversion, the land-cover type 

before the conversion, and plantation patterns / types (e.g. small scale vs. concessions). We 
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considered two external factors affecting rubber expansion, national land policies and the market 

price of rubber. Table 4 shows the type of land-cover that rubber replaced; Table 5 summarizes 

rubber expansion in 4 time periods between 2003 and 2014. Figure 5 shows rubber prices 

through time. Prices were relatively stable between 1978 and 2003; after that they rose steadily 

until the economic crisis of 2008 when they fell steeply; after 2008 rubber prices rose again 

through 2011 when the European economic debt crises led to a downturn in commodity prices. 

In 2017 rubber prices are roughly equivalent to what they were in 2005. We will explore these 

changes on a country by country basis. 

Table 4: Land converted to rubber by country (area in km2, and % total) 

Land Cover Thailand Cambodia Vietnam 

Xishuang-

banna, China Laos 

Shan State, 

Myanmar Total 

Rubber from evergreen 

forests 

1,646 17,624 7,240 3,238 6,012 1,918 37,677 

9 61 55 84 82 67 50 

Rubber from deciduous 

forests 

313 10,456 2,253 29 1,075 588 14,715 

2 36 17 1 15 21 20 

Rubber from low 

vegetation area 

16,956 659 3,788 602 204 360 22,568 

90 2 29 16 3 13 30 

Rubber from evergreen 

and deciduous forests 

1,959 28,080 9,493 3,266 7,087 2,506 52,392 

4 54 18 6 14 5 100 

 

 

Figure 5: Mean rubber price US Dollar/kg per year (“IndexMundi,” 2017). 
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Thailand  

Thailand shows old rubber (pre 2003, mainly occurring southeast of Bangkok on large scale 

plantations); this accounted for 34% of the rubber we mapped in Thailand. New rubber was 

planted in northeast Thailand between 2003 and 2008 by small farmers converting permanent 

agriculture to rubber; 90% of the rubber planted after 2003 was on areas mapped as low 

vegetation (crops); only 4% of deforestation caused by rubber in the region occurred in Thailand 

(Fig 3, Tables 2 and 3). After the 2008 economic crises, farmers in the Northeast stopped 

planting rubber. In northern Thailand smallholder planted fruit trees (Fig 3 and Table 1). It 

should be noted that while the expansion of rubber in northeast Thailand did not cause 

deforestation, this is because the Northeast was heavily deforested in the 1950 and 60s as the 

Thai government encouraged the cultivation of cash crops (Vityakon et al., 2004). It was the land 

used to grow these crops (rice, cassava, others) that was later converted to rubber. 

In the 1970s the Thai government began to introduce rubber in the Northeast as a viable 

commercial tree crop. The Thai national government supported the development of infrastructure 

and services such as the Buriram Rubber Research Station and the numerous Offices of Rubber 

Replanting Aid Fund (ORRAF) found throughout the Northeast. Beginning in 1989 ORRA 

provided smallholders in the Northeast, those with less than 2.4 ha of land, with technical advice, 

free seedlings and fertilizer, low-cost credit for labor costs (including family labor), material 

inputs (especially herbicides), and other income generating activities. After 2004, ORRAF 

limited its technical advice on cultivation and free seedlings to households with up to 1 to 1.25 

ha of land. We assume that these policy changes followed by the economic crisis reduced 

smallholder incentives to plant rubber and basically stopped rubber expansion. Figure 6 shows 

the area of rubber expansion in Thailand and the other countries / regions and Figure 5 the 
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changes in rubber prices during this period. 

Table 5: Expansion of rubber in MSEA by country/region and year (area in km2, and % total) 

Class Names Thailand Cambodia Vietnam 

Xishuang-

banna, China Laos 

Shan State, 

Myanmar Total 

Rubber, before 2003 
9,699 1,005 5,885 2,313 365 55 19,322 

34 3 31 37 5 2 20 

Rubber, 2003-2005 
5,104 667 2,521 963 234 61 9,550 

18 2 13 16 3 2 10 

Rubber, 2006-2008 
13,463 4,456 3,763 2,793 3,256 1,802 29,533 

47 15 20 45 43 62 31 

Rubber, 2009-2011 
271 12,502 5,713 87 2,695 310 21,576 

1 42 30 1 35 11 23 

Rubber, 2012-2014 
77 11,114 1,284 26 1,106 693 14,301 

0 37 7 0 14 24 15 

Total 28,614 29,743 19,166 6,182 7,656 2,921 94,282 

% of total rubber 30 32 20 7 8 3 100 

 

Cambodia 

In Cambodia, 79% of the conversion to rubber occurred between 2009 and 2014 (Table 5): and 

97% of this conversion replaced forest lands; 54% of all deforestation caused by the conversion 

to rubber in the mapped region occurred in Cambodia (Table 2). Fruit trees, cashews, pulp trees, 

and coffee also occur, but on fewer and smaller plantations compared to rubber (Fig 4). The 2001 

Land Law established a relatively comprehensive legal framework for land tenure and 

administration and extended ‘ownership’ rights to residential and agricultural land. The law also 

formalized a system for granting land concessions for economic purposes such as an agribusiness 

enterprise (Economic Land Concessions, or ELCs); the law stipulated that ELCs have a 

maximum duration of 99 years, are limited to 10,000 hectares per concessionaire, and concession 

land must be put to use within twelve months of being granted (Scurrah & Hirsch, 2015). All but 

one of the rubber concessions were granted after 2005 (Open Development Cambodia (ODC), 
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2017). In 2012 the government placed a moratorium on the issuing of new ELCs and instructed a 

review of existing concessions. Figure 6 shows the area of rubber expansion in Cambodia. A 

small amount of rubber (1,005 km2) had been planted before 2003, while only 667 km2 was 

planted between 2003 and 2005. After 2005 both rubber expansion and rubber prices (Figure 5) 

rose rapidly until 2011. After 2012, further rubber expansion was prohibited by the moratorium, 

however, companies that had already received their concession continued to plant new rubber in 

order to meet the requirement that all concession land be utilized. Interviews with officials from 

three different rubber concessions in the Northeast indicated that given the low rubber prices 

they were trying to diversify their new plantings with cashews and black pepper. Most of the 

rubber we mapped in Cambodia was grown on large concessions although some smallholder 

rubber was also noted.  

Vietnam 

In northern and central Vietnam pulp tree plantations prevail while southern Vietnam shows 

large scale plantations of old and new rubber (72% of the new rubber was planted on forest land; 

and 18% of the deforestation caused by rubber in the region was in Vietnam), cashews, and 

coffee (Fig 3 and Tables 1 and 2). Thirty-one percent of the rubber we mapped in Vietnam was 

planted before 2003; and 33% was planted between 2003 and 2008 (Table 5). In 2009 the Prime 

Minister’s Office issued Decision 750/QD-TTg aiming to increase Vietnam’s rubber plantation 

area to 8,000 km2 by 2020 (Akram-Lodhi, 2010)and 37% of the rubber we mapped was planted 

after 2009. Today, Gia Lai Province (Central Highlands) has become the key location for rubber 

plantation expansion with total area accounting for 12% of the total rubber plantation area of the 

country; Dak Lak Province (Central Highlands, south of Gia Lai Province) accounts for 4% of 

the total rubber plantation area of the country in 2012. Figure 6 shows the area of rubber 



28 
 

expansion in Vietnam and of the other countries / regions and Figure 5 the changes in rubber 

prices during this period. 

Xishuangbanna Prefecture, Yunnan, China 

Thirty-seven percent of the rubber in Xishuangbanna was planted before 2003 (Table 5); new 

smallholder plots were established between 2006 and 2008 (85% were converted from forests; 

approximately 6% of the deforestation caused by rubber in the region was in Xishuangbanna) 

(Fig 3, Tables 2 and 3). In early 1950’s China introduced rubber into Xishuangbanna to be grown 

on large-scale state collective farms. In 1982 China dismantled farming communes and returned 

land to farmers for growing crops—which included rubber in Xishuangbanna. China 

strengthened incentives for planting rubber in 2002 with the ‘Grain for Green’ campaign to 

promote economic development and stop shifting cultivation. Rubber is considered a ‘forest’ tree 

and farmers were subsidized for replacing their shifting cultivation fields with rubber trees (Fox 

& Castella, 2013). Figure 6 shows the area of rubber expansion in Xishuangbanna. After the 

2008 economic crisis only 113 Km2 of rubber were planted. 

Laos 

As of 2014 Laos still had 57% forest cover; most rubber plantations were established after 2006; 

and 97% were planted on previously forested land. Laos accounted for 14% of the deforestation 

in the region caused by rubber expansion (Tables 1, 2 and 3). In northern Laos rubber is the main 

boom crop (smallholders and concessions) while in the South large scale plantations of rubber, 

pulp trees, and sugarcane occur (Figs 3 and 4). The Lao government introduced new land laws in 

the 1990s to demarcate forests and protected areas. The 1996 National Land Forest Allocation 

Policy delineated village boundaries and recognized villages’ rights to manage and use 
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agricultural land and limited forest resources. A land titling program funded by World Band and 

Australian Agency for International Development (1998 to 2007) led to the granting of large 

concessions to companies from neighboring countries. In southern Laos, the largest recipients of 

land concessions are Vietnamese investors in rubber plantations (Manivong, Cramb, & Newby, 

2014). In 2004 China established the Opium Replacement Program (ORP) to curb opium 

production. The ORP provided Chinese companies finical and bureaucratic support to invest in 

large-scale commercial agriculture in northern Laos and Myanmar. Rubber was the main crop 

established through ORP support. In 2007 Laos placed a moratorium on land concessions and a 

second moratorium was announced in 2012 (Lu, 2017). A ceiling of 3,000 km2 (nationwide) was 

placed on rubber; as of 2014 we mapped 7,656 km2 of rubber. Figure 6 shows the area of rubber 

expansion in Laos and of the other countries / regions and Figure 5 the changes in rubber prices 

during this period. Rubber planting in Laos basically stopped after the 2011 economic crises.  

Shan State, Myanmar  

Shan State shows 59% forest cover and rubber is the main tree crop (Table 1). Most rubber 

planting occurred after 2006 on forest lands (88%); only 5% of the deforestation in the region 

caused by rubber was in Shan State (Table 2); Figure 3 shows conversion of forests to large scale 

plantations. As in Laos, China established the Opium Replacement Program in 2004 to curb 

opium production and provided Chinese companies finical and bureaucratic support for investing 

in large-scale commercial agriculture in Myanmar (Lu, 2017). Rubber was the main crop 

established through ORP support. In 2012 Myanmar passed the Farmland Law, the Vacant, 

Fallow, and Virgin lands Management Law, and the Forest Investment Law. These laws have 

enabled the granting of large scale concessions for tree crops. To date, most land concessions are 

being granted in upland areas particularly along the Thai and Chinese borders. This is partially 



30 
 

because tenure in the uplands has historically been regulated by customary land, yet customary 

land-use rights are not formally recognized by the government (Scurrah, Hirsch, & Woods, 

2015). Figure 6 shows the area of rubber expansion in Shan State, Myanmar, Figure 5 the 

changes in rubber prices. As in Xishuangbanna, and to a lesser extent Laos, rubber planting 

basically stopped after the 2008 economic crises. There was a slight uptick in rubber planting 

after 2012.  

 

Figure 6: Error adjusted area of rubber expansion in Thailand, Cambodia, Vietnam, Laos, Shan State 

(Myanmar), and Xishuangbanna (China) as derived from land-cover change classification. 
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5. Discussion 

We performed a supervised change detection in an upscaling approach to classify land-cover 

dynamics with a focus on boom crops in MSEA using 16-day image composites of MODIS EVI 

and SWIR data from 2001-2014. In comparison with other mapping activities that focused on the 

MSEA region (e.g. Z. Li & Fox, 2012; Miettinen, Shi, & Liew, 2016; Stibig, Achard, Carboni, 

Raši, & Miettinen, 2014) we obtained similar accuracies, but our map provides more detail on 

boom crop change and smallholder land-use practices (e.g. rotational agriculture). The map of 

Stibig et al. (2014) identified multiple forest types, plantations, and their change, but the analysis 

is based on a systematic sampling across MSEA, which can provide valuable information on e.g. 

forest loss in the region, but spatially explicit information on changes cannot be provided. The 

wall-to-wall map of Miettinen et al. (2016) also provides more detail on forest types in MSEA, 

but their map includes Insular Southeast Asia and they focused on large scale oil palm 

plantations while other dynamics related to tree plantations were grouped with the class 

‘regrowth’. Considering that land-use practices with crop-fallow rotation are widely practiced in 

MSEA, boom crops need to be mapped as a separate class to quantify land-use and land-cover 

changes. Li and Fox (2012) did this by focusing on rubber only. Their map provides valuable 

information on the distribution of young (< 4 years old) and old rubber in MSEA for 2010, but 

without information on change. Our map provides such detail, with information on plantation 

extents in 2014 (i.e. pulp trees, cashews, coffee, pineapple, fruit trees) and detailed information 

on conversions related to rubber and sugarcane. Dynamics can thus be analyzed for different 

periods and e.g. deforestation rates associated with the expansion of rubber quantified. 

Our classification was performed in iterations and each iteration focused on improving class-

wise and overall accuracies by adjusting sample size of the classes through a random selection of 
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points from a larger pool of samples and adapting the classification scheme. This allowed us to 

obtain an accurate classification of land-cover change with an overall accuracy for pure pixels of 

82.2% and only four of the 24 classes show either UA or PA below 70%. We found that class-

wise accuracies are affected by temporal heterogeneity of each class, area, and fragmentation; 

i.e. for small and fragmented classes (mostly the change classes) we usually obtained fewer 

points due to the MODIS pixel size. These change classes, however, would need more points to 

fully represent their temporal heterogeneity and obtain a reliable classification (Foody & Arora, 

1997; Hurni et al., 2017; Pal, 2005). During the iterations we focused on these issues (i.e. trade-

offs in accuracies in relation to class area, class heterogeneity, and sample sized) and by 

adjusting the number of sample points among classes we managed to obtain good accuracies for 

20 classes and acceptable accuracies for the four remaining classes. We obtained our most 

accurate classifications when classes covered similar areas and represented similar dynamics (i.e. 

had similar spatio-temporal heterogeneity) and a similar number of sample points. Heydari and 

Mountrakis (2018) also demonstrated the importance of obtaining balanced numbers of sample 

points between classes when using machine learning classifiers; overall accuracies dropped 

significantly when using different size samples among the classes. 

We evaluated the accuracy of the map using pure and mixed pixels and found that accuracies for 

mixed pixels were substantially lower, with an overall accuracy of 61.5% for pixels with a 

majority cover of 70-80% and of 43.4% for pixels with a majority cover of 50-60%. For both, 

pure and mixed pixels, however, misclassification patterns are similar and the transformation 

classes (groups 2 and 3) show more errors. On the one hand the transformation classes mix with 

the corresponding ‘from’ class, e.g. ‘rubber from evergreen forests’ mixes with ‘evergreen 

forests’. On the other hand the transformation classes mix with themselves, e.g. the type of 
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change (from-to) is classified correctly, but the timing of the change is wrong or confusions with 

the class ‘rotational agriculture’ occur. The majority of the transformation classes (groups 2 and 

3) show higher UA’s than PA’s and the difference between UA and PA usually increases with 

increasingly mixed pixels. We thus tend to underestimate the area covered by these classes and 

while we provide error adjusted area estimates based on the evaluation of pure pixels, we did not 

perform this for the mixed pixels. As a result our area estimates still show a certain bias and our 

calculations do not consider uncertainties related to mixed pixels. Due to the lower accuracy of 

mixed pixels, we can also expect that transformations that cover larger areas are classified more 

accurately compared to small scale dynamics.  

Rubber caused deforestation in all countries in the region except Thailand, and even there it was 

planted on land deforested to plant annual crops. The expansion of rubber, however, has slowed 

as international prices have fallen (Figure 6). The Rubber Economist (2017) does not expect 

there to be another boom in rubber prices / demand in the short to medium term future, but they 

still forecast that the consumption of rubber (natural and synthetic) will increase from 27.52 

million tons in 2016 to 29.41 million tons in 2017, i.e. an annual growth rate of 3.7%. They 

predict that the growth pattern of the rubber industry for the next few years will remain slow but 

steady (The Rubber Economist, 2017). Already, we have seen a boom in bananas replacing 

rubber in northern Laos (Friis & Nielsen, 2016), and frequent reports of cashews and black 

pepper being planted in northeast Cambodia as farmers diversify from planting more rubber 

(Thorng & Chao, 2016).  

While we may see a decrease in the expansion of rubber because of market prices, another 

problem may also soon affect rubber plantations—a shortage of labor. In precolonial Southeast 

Asia, land was more plentiful than labor. As Jim Scott writes (2009:24) ‘Wars in precolonial 
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Southeast Asia were less about territory than about the seizure of as many captives as possible 

who were then resettled at the core of the winner's territory.’ Today, as industrial estates and 

plantations continue to develop, labor is again becoming a constraint on agriculture. This can be 

seen in the wages rubber plantations are paying to attract and maintain tappers despite low 

rubber prices on the global market. Fox et al. (under review) interviewed 69 tappers in Stung 

Treng, Cambodia; they reported an average wage of $157 (640,000 Riel) per month; with a 

minimum of $20.00 (80,000 Riel) and a maximum of $270 (1,100,000 Riel). In addition to their 

wage, workers receive free housing, and a rice allowance per worker and per child. In 

comparison the Radio Free Asia (2017) reported that the minimum monthly wage for garment 

and footwear workers is $170 a month. Clearly, in order to keep workers, plantation owners have 

to pay competitive wages.   

Likewise in northern Laos, Lu (2017) reported that recruiting and training labor in Laos is 

proving far more difficult for companies than in China where rubber is much more established. 

One company manager noted that ‘this year we’re realizing there is a labor problem’ (Luang 

Namtha, December 2012) while another stated, ‘labor is the main bottleneck for rubber 

development here’ (Luang Namtha, November 2012). Compared to China, Laos has an 

extremely limited labor supply.  

Pholphirul (2013: 78) reports that in northern Thailand the option of hiring non-village labor 

applies not just to workers from other parts of Thailand, but also from neighboring countries. 

Increasingly, workers from Cambodia, Laos and Myanmar are working on Thai rice farms, fruit 

orchards and rubber estates. Rigg (2006) suggests the main cause of labor migration in Southeast 

Asia is the opportunity for higher income or higher wage rates and the ability to transfer money 

home. Li (2017) cautions that labor migration may not be a ‘pathway out of poverty’ but a 
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temporary stop-gap for the extreme poor, who find themselves ejected when they become surplus 

to the requirements of their employers in the urban industrial sector (e.g., because of an 

economic downturn), without necessarily having the option simply to return home. Likewise, 

Barney (2012) in analyzing youth migration from central Laos to Thailand argues that decisions 

to migrate cannot be disconnected from broader issues of agrarian change. For example, the 

allocation of large areas of village land to powerful outsiders effectively coerces members of 

dispossessed households to migrate as a survival strategy. 

Regardless of whether migration leads to higher incomes from non-farm employment (Manivong 

et al., 2014) or are a ‘temporary stop-gap’ on a downward spiral (T. M. Li, 2017), higher wages 

and the need for employers to compete for laborers in a tight labor market, will affect the 

profitability of rubber plantations. While the world will continue to consume natural rubber, the 

rate at which new rubber is planted may be slower for foreseeable future.  

6. Conclusions 

This project sought to map the extent of tree-based crops in the study region in 2014; and the 

expansion of rubber and sugarcane between 2003 and 2014. The map provides information on 

the extent of boom crops (e.g. cashews, pulp trees, coffee, and fruit trees) and detailed 

information on the expansion of sugarcane and rubber plantations for the MSEA region, allowing 

for a comparison between countries and sub-national regions. To our knowledge such detailed 

information has not so far been available at regional level and given the ecological and socio-

economic implications of boom crop expansion it can provide valuable insights on how 

dynamics vary across the region, e.g. the deforestation rates in different countries or 

administrative units associated with the expansion of rubber. We performed a supervised multi-
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date composite change detection technique using the random forest classifier in an upscaling 

approach. Previous research stressed the importance of obtaining sufficient sample points to 

represent the spatio-temporal heterogeneity of each class while balancing the number of points 

among classes to obtain good classification accuracies (Foody & Arora, 1997; Heydari & 

Mountrakis, 2018). We followed these suggestion and by iteratively adjusting class-wise sample 

size and the classification scheme, we managed to improve the accuracies of all classes and 

obtained high accuracies for most classes. It is important to note that we performed the selection 

of samples randomly by drawing from a larger pool of sample points. This guaranteed that 

accuracies, and thus the following classification iterations, were not biased by a targeted addition 

of sample points. Given the large number of sample points required by such a classification 

approach, future studies may assess how class-wise accuracies are affected by a reduction of the 

featurespace (i.e. using only a selection of MODIS bands that are most relevant for a specific 

classification problem). Grogan et al. (2016) showed that such a reduction of the featurespace 

affects classification accuracies only marginally but improves computational time, while other 

researchers obtained similar accuracies even by reducing the number of sample points (Pal, 

2006). 

We performed the accuracy assessment for pure pixels and for mixed pixels with a majority 

cover of 70-80% and for mixed pixels with a majority cover of 50-60%. Similar to previous 

research working at MODIS resolution we found that sub-pixel changes occur and that such 

mixed pixels tend to show more misclassifications (Lunetta et al., 2006; Setiawan & Yoshino, 

2014). With increasingly mixed pixels classification accuracies decline and differences between 

UA and PA increase, which has implications for the calculation of error adjusted area estimates 

(Olofsson et al. 2014). In this study we based the error adjusted area estimates on the accuracy 
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assessment of pure pixels. We, however, showed that with increasingly mixed pixels, accuracies 

also decline. Future research should address how to best include variations in mixed-pixel 

accuracies in error adjusted area estimates. 

We found that in 2014, 25% of the landscape was covered by evergreen forest, 14% by 

deciduous forest, 13% by rotational agriculture, and 24% by low vegetation (mainly cereal crops 

but also scrub and bushes). In 2014 eight percent of the landscape was classified as rubber 

(94,282 km2); while cashews covered 1% of the landscape, coffee and fruit trees each covered 

2%, and pulp trees covered 4%. Tree crops accounted for 18% of the landscape. Approximately 

74,960 km2 of land were converted to rubber between 2003 and 2014; 70% percent of the 

expansion of rubber plantations caused deforestation; while 30 % occurred on areas previously 

covered by low vegetation (mainly crops). Our results nullified our hypothesis that boom crops 

were marked by intensification of previously used agricultural land and were not necessarily 

accompanied by deforestation. The expansion of rubber between 2003 and 2014 caused 

deforestation primarily in Cambodia and Laos, but also in Vietnam, Xishaungbanna, and Shan 

State.  

We began this paper with the distinction between booms that have taken place under ‘secure’ 

conditions and those that have not (Hall et al. 2011). The maps we produced showing large scale 

land concessions for rubber in southern Laos and northeast Cambodia represent the ‘insecure’ 

booms’ Hall argues that take place in areas imagined as ‘frontiers’ (Hall et al. 2011: 839). In 

northeast Thailand, northern Laos, Xishuangbanna, and Vietnam for the most part we find 

smallholder rubber plantations or what Hall et al. (2011:83) describe as ‘secure’ booms because 

‘the basic tenure relations that existed before the boom survive it.’ The Rubber Economist (2017) 

estimates that most major rubber producing countries have a relatively high percentage share of 
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smallholdings and the world share of natural rubber smallholding is around 73% of the total 

rubber area. As Hall et al. (2011:842) suggest various boom crops have been grown under many 

organizational frameworks, and while smallholders have successfully grown all of them, there is 

a fairly clear distinction between crops dominated by relatively independent smallholders (cocoa 

and coffee) and those where larger-scale production has been the rule (fast-growing trees and oil 

palm), with shrimp and rubber as intermediate cases. Clearly rubber can be grown as a successful 

smallholder crop.  

As Fox and Castella (2013) suggest, in order to promote the establishment of a vibrant 

smallholder rubber sector the state needs to establish and effectively implement national policies 

and institutional structures to support smallholder rubber cultivators. National legislation needs 

to be developed that recognizes customary claims to land and grants farmers and farming 

communities legal access to the land they have traditionally used through either secure tenure on 

long-term use rights. In addition to access rights, national agencies need to support smallholders 

through integrate efforts to provide extension, credit, transport and marketing facilities such as 

that provided by the Offices of Rubber Replanting Aid Fund (ORRAF) in Thailand. It may also 

be useful to establish a governing and coordinating body to work closely with all sectors related 

to the rubber industry. At the local level, smallholder farmer groups need to be organized and/or 

supported in order to strengthen rubber cultivation, tapping, processing and marketing. These 

institutional arrangements need to be considered by policymakers as an imperative to support the 

sustainability and economic viability of smallholders’ rubber production. Rubber smallholders 

may also benefit from advice on how to diversify their crop selection 
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Supplementary Material 

 

Figure A: Conversions to rubber by year and conversion type around Stung Treng, Cambodia. Black 

outlined areas represent economic land concessions granted by the government of Cambodia for 

plantation crops. 
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Table A: Accuracy assessment of the classification for pure pixels and mixed pixels. For the evaluation 

of the mixed pixels, we selected areas where the main land-cover (change) class covers 70-80% and 50-

60% of the MODIS pixel. Overall accuracies range from 82.2% (pure pixels) to 61.5% (70-80% pure 

pixels) and 43.4% (50-60% pure pixels). 

 Pure pixels 70-80% pure pixels 50-60% pure pixels 

Land-cover (change) class UA PA Samples UA PA Samples UA PA Samples 

Water 96 95 300 95.8 46.0 300 84.1 24.7 300 

Evergreen forests (F) 83 89.4 918 70.0 62.2 918 53.2 41.6 918 

Deciduous forests (DF) 82.2 87.5 569 54.2 72.6 569 31.8 52.0 569 

Low vegetation areas (LVA) 77.9 90.2 735 58.5 80.8 735 37.9 62.3 735 

Rubber (before 2003) 86.9 83.5 256 89.5 66.4 256 83.5 45.3 256 

Pineapple 97.9 93.9 100 95.0 76.0 100 94.3 33.0 100 

Rubber, from F, 2003-2005 95.2 79 100 75.8 47.0 100 63.6 21.0 100 

Rubber, from LVA, 2003-2005 79.2 77.6 100 52.3 69.0 100 36.3 53.0 100 

Rubber, from F, 2006-2008 85.6 88.3 350 80.9 66.6 350 70.9 45.1 350 

Rubber, from DF, 2006-2008 92.2 71 100 78.1 50.0 100 78.4 29.0 100 

Rubber, from LVA, 2006-2008 85.1 65.5 150 60.2 53.3 150 44.3 38.7 150 

Rubber, from F, 2009-2011 87.1 79.1 360 81.1 53.6 360 67.5 37.5 360 

Rubber, from DF, 2009-2011 89.9 83.7 202 74.3 54.5 202 56.9 36.6 202 

Rubber, from F, 2012-2014 89.2 71.8 150 78.0 56.7 150 65.9 36.0 150 

Rubber, from DF, 2012-2014 81.8 81 100 53.3 49.0 100 44.2 34.0 100 

Sugarcane, from F, 2006-2008 100 97.9 100 100.0 100.0 6 66.7 50.0 4 

Sugarcane, from DF, 2009-2011 100 89.5 19 0.0 0.0 1 0.0 0.0 2 

Rotational Agriculture 62.5 70.4 706 37.0 61.8 706 25.5 49.2 706 

Expansion of LVA / 

intensification 
80.7 67.2 356 74.7 59.8 356 55.8 42.1 356 

New Water 100 91.9 100 97.5 39.0 100 95.8 23.0 100 

Pulp trees 78.2 74.7 400 66.1 65.0 123 64.2 54.6 273 

Cashews 92.7 74.5 156 68.4 25.0 156 45.5 12.8 156 

Fruit trees 84.5 68 202 57.0 44.6 202 36.9 36.1 202 

Coffee 87.5 88.9 320 41.0 54.8 62 42.4 34.0 106 

 


